นโยบายงานวิจัย /จรรยาบรรณนักวิจัย /ระดับคุณภาพบทความวิจัยตีพิมพ์ /ระดับคุณภาพผลงานวิชาการ /แหล่งทุน /ดาวน์โหลด /ฐานข้อมูลวิจัย /วิเคราะห์-สังเคราะห์งานวิจัย /ลิขสิทธิ์ /ข่าว


Bimodal action of miroestrol and deoxymiroestrol, phytoestrogens from Pueraria candollei var. mirifica, on hepatic CYP2B9 and CYP1A2 expressions and antilipid peroxidation in mice


Author

-

Udomsuk L Juengwatanatrakul T Putalun W Jarukamjorn K.


Journal

- Nutrition Research

Volume

- 32

Year

- 2012

Publication type

- Research article (Inter)

Page list

- 45-51

Abstract

   

Miroestrol and deoxymiroestrol are phytoestrogens isolated from Pueraria candollei var. mirifica. The influence of miroestrol and dexoymirosestrol on hepatic cytochrome P450 (P450) enzymes and antioxidative activity in brain was examined in C57BL/6 mice compared with that of a synthetic female sex hormone estradiol. We hypothesized that miroestrol and deoxymiroestrol would induce CYP2B9 expression, whereas CYP1A2 expression would be suppressed compared with estradiol. Miroestrol and deoxymiroestrol treatment significantly increased uterus weight and volume. In addition, both of these phytoestrogens induced the expression of CYP2B9 and suppressed the expression of CYP1A2, as expected. Hepatic P450 activities correspondingly showed that both compounds increased benzyloxyresorufin O-dealkylase activity, whereas methoxyresorufin O-dealkylase activity was reduced. These observations suggested that miroestrol and deoxymiroestrol might affect hepatic P450 enzymes, including the CYP2B9 and CYP1A2 P450 isoforms. Assessment of lipid peroxidation demonstrated that miroestrol and deoxymiroestrol markedly decreased levels of malondialdehyde formation in the mouse brain. This is the first report suggesting miroestrol and deoxymiroestrol as potential alternative medicines to estradiol because of their distinctive ability to regulate mouse hepatic P450 expression and their beneficial antioxidative activities.


Keywords

   

Miroestrol Deoxymiroestrol CYP2B9 CYP1A2 Lipidperoxidation TBARS Mousebrain Mouseliver